Những câu hỏi liên quan
I Love Song Joong ki
Xem chi tiết
Nguyễn Hưng Phát
12 tháng 7 2016 lúc 9:33

\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)

\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn

Bài 2:

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c dãy tỉ số bằng nhau:

Bạn tự làm nha

Bình luận (0)
Le Thi Khanh Huyen
12 tháng 7 2016 lúc 9:30

Bài 1 :

\(\frac{x}{y}=\frac{5}{3}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )

\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)

\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)

Mà x ; y cùng dấu nên :

\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)

Bài 2 :

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)

\(\frac{x}{10}=3\Rightarrow x=30\)

\(\frac{y}{15}=3\Rightarrow y=45\)

\(\frac{z}{21}=3\Rightarrow z=63\)

Bình luận (0)
ninja siêu đẳng
Xem chi tiết
ninja siêu đẳng
7 tháng 12 2018 lúc 5:23

các bạn giải nhanh cho mình nhé vì mình đang cần gấp

Bình luận (0)
Pham Van Hung
7 tháng 12 2018 lúc 12:40

Mình nghĩ bạn viết hơi sai đề bài.

\(x^2+xz-y^2-yz=\left(x^2-y^2\right)+xz-yz=\left(x-y\right)\left(x+y\right)+z\left(x-y\right)=\left(x-y\right)\left(x+y+z\right)\)

Tương tự: \(y^2+xy-z^2-xz=\left(y-z\right)\left(x+y+z\right)\)

\(z^2+yz-x^2-xy=\left(x+y+z\right)\left(z-x\right)\)

Khi đó:

 \(P=\frac{1}{\left(y-z\right)\left(x-y\right)\left(x+y+z\right)}+\frac{1}{\left(z-x\right)\left(y-z\right)\left(x+y+z\right)}+\frac{1}{\left(x-y\right)\left(x+y+z\right)\left(z-x\right)}\)

\(=\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x+y+z\right)}=0\)

Bình luận (0)
ninja siêu đẳng
7 tháng 12 2018 lúc 13:10

um, cảm ơn bạn Pham Van Hung, có lẽ là mình chép sai đầu bài

Bình luận (0)
Vũ Tiến Mạnh
Xem chi tiết
Jenny phạm
Xem chi tiết
Nga Nguyễn
26 tháng 8 2018 lúc 8:37

ta có \(\left(x-\frac{1}{5}\right)\left(y+\frac{1}{2}\right)\left(z-3\right)=0\)

Suy ra 1 trong 3 nhân tử phải bằng 0

xét từng trường hợp rồi làm tiếp

Bình luận (0)
kim chi nguyen
Xem chi tiết
Nguyễn Thị Thảo Xuyên
Xem chi tiết
tiểu an Phạm
Xem chi tiết
chikaino channel
9 tháng 5 2018 lúc 15:54

Đặt  \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

Ta có \(a,b,c>0;a^2+b^2+c^2=1\)

và \(P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)

\(=\frac{a^2}{a\left(1-a^2\right)}+\frac{b^2}{b\left(1-b^2\right)}+\frac{c^2}{c\left(1-c^2\right)}\)

Áp dụng bất đẳng thức Cô-si cho 3 số dương ta có

\(a^2\left(1-a^2\right)^2=\frac{1}{2}.2a^2.\left(1-a^2\right)\left(1-a^2\right)\)

\(\le\frac{1}{2}\left(\frac{2a^2+1-a^2+1-a^2}{3}\right)^3=\frac{4}{27}\)

\(\Rightarrow a\left(1-a^2\right)\le\frac{2}{3\sqrt{3}}\Rightarrow\frac{a^2}{a\left(1-a^2\right)}\ge\frac{3\sqrt{3}}{2}a^2\)(1)

Tương tự \(\frac{b^2}{b\left(1-b^2\right)}\ge\frac{3\sqrt{3}}{2}b^2\)(2)

\(\frac{c^2}{c\left(1-c^2\right)}\ge\frac{3\sqrt{3}}{2}c^2\)(3)

từ (1),(2) và (3) ta có \(P\ge\frac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\frac{3\sqrt{3}}{2}\)

Vậy Min của \(P=\frac{3\sqrt{3}}{2}\)Khi x=y=z\(=\sqrt{3}\)

Bình luận (0)
Vo Trong Duy
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2017 lúc 17:18

Dự đoán dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) ta tính được \(A=\frac{1}{4}\)

Ta sẽ chứng minh nó là GTNN của A

Thật vậy áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=Σ\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\)

Do đó ta cần phải chứng minh \(\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{x+y+z}{4}\)

\(\Leftrightarrow4\left(x^2+y^2+z^2\right)^2\ge\left(x+y+z\right)Σ\left(2x^3+x^2y+x^2z\right)\)

\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+6x^2y^2-2x^2yz\right)\ge0\)

\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+4x^2y^2\right)+Σ\left(2x^2y^2-2x^2yz\right)\ge0\)

\(\LeftrightarrowΣ\left(x^4-3x^3y+4x^2y^2-3xy^3+y^4\right)+Σ\left(x^2z^2-2z^2xy+y^2z^2\right)\ge0\)

\(\LeftrightarrowΣ\left(x-y\right)^2\left(x^2-xy+y^2\right)+Σz^2\left(x-y\right)^2\ge0\) (đúng)

Vậy \(x=y=z=\frac{1}{3}\) thì \(A_{Min}=\frac{1}{4}\)

Bình luận (0)
Nguyen Ngoc Minh Ha
Xem chi tiết